The Chemical Formula for the Combination of Vinegar and Baking Soda

Baking soda

The proper chemical name for sodium bicarbonate or baking soda is sodium hydrogen carbonate.


Sodium bicarbonate is a white powder which is commonly used as an antacid and in cooking as a leavening agent as it reacts with acidic ingredients such as buttermilk and yogurt. It is also used for cleaning and as a deodorizer. It is a very weak base and may be used as an ingredient in toothpaste.

Bicarb of soda can also neutralize both acids and bases due to its amphoteric nature and is often used to mop up small chemical spills involving invloving acidic or basic substances.

Sodium bicarb

The chemical formula for sodium bicarbonate is NaHCO3

The molecular mass or molar mass of sodium bicarbonate is 84.007 g/mol

Baking soda vigorously reacts with vinegar to produce carbon dioxide gas. The chemical equation for the reaction is

Sodium bicarbonate and vinegar => Sodium acetate and water and carbon dioxide

NaHCO3 + CH3COOH => CH3COONa+ + H2O + CO2


Carbon dioxide

From Wikipedia, the free encyclopedia


Jump to: navigation, search

Carbon dioxide
CAS number 124-38-9 YesY
PubChem 280
ChemSpider 274 YesY
UNII 142M471B3J YesY
EC number 204-696-9
UN number 1013
KEGG D00004 YesY
MeSH Carbon+dioxide
ChEBI CHEBI:16526 YesY
RTECS number FF6400000
ATC code V03AN02
Beilstein Reference 1900390
Gmelin Reference 989
3DMet B01131
Jmol-3D images Image 1
Image 2
Molecular formula CO2
Molar mass 44.01 g mol−1
Exact mass 43.989829244 g mol−1
Appearance Colorless gas
Odor Odorless
Density 1.562 g/mL (solid at 1 atm and −78.5 °C)
0.770 g/mL (liquid at 56 atm and 20 °C)
1.977 g/L (gas at 1 atm and 0 °C)
Melting point

-78 °C, 194.7 K, -109 °F (subl.)

Boiling point

-57 °C, 216.6 K, -70 °F (at 5.185 bar)

Solubility in water 1.45 g/L at 25 °C, 100 kPa
Acidity (pKa) 6.35, 10.33
Refractive index (nD) 1.1120
Viscosity 0.07 cP at −78 °C
Dipole moment zero
Molecular shape linear
Std enthalpy of
−393.5 kJ·mol−1
Standard molar
214 J·mol−1·K−1
MSDS External MSDS
NFPA 704
NFPA 704.svg

Related compounds
Other anions Carbon disulfide
Carbon diselenide
Other cations Silicon dioxide
Germanium dioxide
Tin dioxide
Lead dioxide
Related carbon oxides Carbon monoxide
Carbon suboxide
Dicarbon monoxide
Carbon trioxide
Related compounds Carbonic acid
Carbonyl sulfide
Supplementary data page
Structure and
n, εr, etc.
Phase behaviour
Solid, liquid, gas
Spectral data UV, IR, NMR, MS
 YesY (verify) (what is: YesY/N?)
Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa)
Infobox references

Carbon dioxide (chemical formula CO2) is a naturally occurring chemical compound composed of two oxygen atoms covalently bonded to a single carbon atom. It is a gas at standard temperature and pressure and exists in Earth's atmosphere in this state, as a trace gas at a concentration of 0.039% by volume.

As part of the carbon cycle known as photosynthesis, plants, algae, and cyanobacteria absorb carbon dioxide, light, and water to produce carbohydrate energy for themselves and oxygen as a waste product.[1] But in darkness photosynthesis cannot occur, and during the resultant respiration small amounts of carbon dioxide are produced.[2] Carbon dioxide also is a by-product of combustion; is emitted from volcanoes, hot springs, and geysers; and is freed from carbonate rocks by dissolution.

As of November 2011, carbon dioxide in the Earth's atmosphere is at a concentration of 390 ppm by volume.[3] Atmospheric concentrations of carbon dioxide fluctuate slightly with the change of the seasons, driven primarily by seasonal plant growth in the Northern Hemisphere. Concentrations of carbon dioxide fall during the northern spring and summer as plants consume the gas, and rise during the northern autumn and winter as plants go dormant, die and decay. Taking all this into account, the concentration of CO2 grew by about 2 ppm in 2009.[4] Carbon dioxide is a greenhouse gas as it transmits visible light but absorbs strongly in the infrared and near-infrared, before slowly re-emitting the infrared at the same wavelength as what was absorbed.

Before the advent of human-caused release of carbon dioxide to the atmosphere, concentrations tended to increase with increasing global temperatures, acting as a positive feedback for changes induced by other processes such as orbital cycles.[5] There is a seasonal cycle in CO2 concentration associated primarily with the Northern Hemisphere growing season.[6]

Carbon dioxide has no liquid state at pressures below 5.1 standard atmospheres (520 kPa). At 1 atmosphere (near mean sea level pressure), the gas deposits directly to a solid at temperatures below −78 °C (−108 °F; 195 K) and the solid sublimes directly to a gas above −78 °C. In its solid state, carbon dioxide is commonly called dry ice.

CO2 is an acidic oxide: an aqueous solution turns litmus from blue to pink. It is the anhydride of carbonic acid, an acid which is unstable in aqueous solution, from which it cannot be concentrated. In organisms carbonic acid production is catalysed by the enzyme, carbonic anhydrase.

CO2 + H2O is in equilibrium with H2CO3

CO2 is toxic in higher concentrations: 1% (10,000 ppm) will make some people feel drowsy.[7] Concentrations of 7% to 10% cause dizziness, headache, visual and hearing dysfunction, and unconsciousness within a few minutes to an hour.[8]








This entry was posted in Uncategorized. Bookmark the permalink.

Comments are closed.