The solar system consists of planets and their moons, comets, meteoroids, and asteroids that all orbit the Sun.

SECTION 1
The Solar System
Main Idea Gravity assisted in the formation of the solar system and continues to hold the planets in their places as they orbit the Sun.

SECTION 2
The Inner Planets
Main Idea The inner planets—Mercury, Venus, Earth, and Mars—are the closest planets to the Sun.

SECTION 3
The Outer Planets
Main Idea The outer planets—Jupiter, Saturn, Uranus, and Neptune—are the farthest planets from the Sun.

SECTION 4
Other Objects in the Solar System
Main Idea Comets, meteoroids, and asteroids are smaller than planets but also orbit the Sun and are part of the solar system.

How is space explored?
You’ve seen the Sun and the Moon. You also might have observed some of the planets. But to get a really good look at the solar system from Earth, telescopes are needed. The optical telescope at the Keck Observatory in Hawaii allows scientists a close-up view.

Science Journal If you could command the Keck telescope, what would you view? Describe what you would see.
Model Crater Formation

Some objects in the solar system have many craters. The Moon is covered with them. The planet Mercury also has a cratered landscape. Even Earth has some craters. All of these craters formed when rocks from space hit the surface of the planet or moon. In this lab, you’ll explore crater formation.

1. Place white flour into a metal cake pan to a depth of 3 cm.
2. Cover the flour with 1 cm of colored powdered drink mix or different colors of gelatin powder.
3. From different heights, ranging from 10 cm to 25 cm, drop various-sized marbles into the pan.
4. Think Critically Make drawings in your Science Journal that show what happened to the surface of the powder when marbles were dropped from different heights.

Start-Up Activities

Identify Questions Before you read the chapter, write what you already know about the solar system under the left tab of your Foldable. Write questions about what you’d like to know under the center tab. After you read the chapter, list what you learned under the right tab.

The Solar System Make the following Foldable to help you identify what you already know, what you want to know, and what you learned about the solar system.

STEP 1 Fold a vertical sheet of paper from side to side. Make the front edge about 1.25 cm shorter than the back edge.

STEP 2 Turn lengthwise and fold into thirds.

STEP 3 Unfold and cut only the top layer along both folds to make three tabs.

STEP 4 Label each tab.

Know? Like to know? Learned?

Preview this chapter’s content and activities at earth.msscience.com

Roger Ressmeyer/CORBIS, (inset) Matt Meadows
Learn It! Good readers compare and contrast information as they read. This means they look for similarities and differences to help them to remember important ideas. Look for signal words in the text to let you know when the author is comparing or contrasting.

<table>
<thead>
<tr>
<th>Compare and Contrast Signal Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compare</td>
</tr>
<tr>
<td>as</td>
</tr>
<tr>
<td>like</td>
</tr>
<tr>
<td>likewise</td>
</tr>
<tr>
<td>similarly</td>
</tr>
<tr>
<td>at the same time</td>
</tr>
<tr>
<td>in a similar way</td>
</tr>
</tbody>
</table>

Practice It! Read the excerpt below and notice how the author uses contrast signal words to describe the differences between types of planets.

You can see that the planets **closer** to the Sun travel **faster** than planets **farther** away from the Sun. Because of their **slower** speeds and the **longer** distances they must travel, the outer planets take much **longer** to orbit the Sun than the inner planets do.

—from page 694

Apply It! Compare and contrast Earth’s characteristics on page 698 to the other planets.
Target Your Reading

Use this to focus on the main ideas as you read the chapter.

1. **Before you read** the chapter, respond to the statements below on your worksheet or on a numbered sheet of paper.
 - Write an A if you **agree** with the statement.
 - Write a D if you **disagree** with the statement.

2. **After you read** the chapter, look back to this page to see if you’ve changed your mind about any of the statements.
 - If any of your answers changed, explain why.
 - Change any false statements into true statements.
 - Use your revised statements as a study guide.

<table>
<thead>
<tr>
<th>Before You Read A or D</th>
<th>Statement</th>
<th>After You Read A or D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The Sun contains more than 99 percent of the mass of the entire solar system.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Venus is sometimes called Earth’s twin because its size and mass are similar to Earth’s.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mars is the third planet from the Sun and is nicknamed the blue planet.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Earth is the most volcanically active object in the solar system.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Jupiter, Saturn, Uranus, and Neptune all have rings that orbit these planets.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Most asteroids are located in an area called the asteroid belt, which is located between the orbits of Jupiter and Saturn.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Asteroids, meteoroids, and comets do not contain water.</td>
<td></td>
</tr>
</tbody>
</table>

Print out a worksheet of this page at earth.mssscience.com
Ideas About the Solar System

People have been looking at the night sky for thousands of years. Early observers noted the changing positions of the planets and developed ideas about the solar system based on their observations and beliefs. Today, people know that objects in the solar system orbit the Sun. People also know that the Sun’s gravity holds the solar system together, just as Earth’s gravity holds the Moon in its orbit around Earth. However, our understanding of the solar system changes as scientists make new observations.

Earth-Centered Model Many early Greek scientists thought the planets, the Sun, and the Moon were fixed in separate spheres that rotated around Earth. The stars were thought to be in another sphere that also rotated around Earth. This is called the Earth-centered model of the solar system. It included Earth, the Moon, the Sun, five planets—Mercury, Venus, Mars, Jupiter, and Saturn—and the sphere of stars.
Sun-Centered Model People believed the idea of an Earth-centered solar system for centuries. Then in 1543, Nicholas Copernicus published a different view. Copernicus stated that the Moon revolved around Earth and that Earth and the other planets revolved around the Sun. He also stated that the daily movement of the planets and the stars was caused by Earth’s rotation. This is the Sun-centered model of the solar system.

Using his telescope, Galileo Galilei observed that Venus went through a full cycle of phases like the Moon’s. He also observed that the apparent diameter of Venus was smallest when the phase was near full. This only could be explained if Venus were orbiting the Sun. Galileo concluded that the Sun is the center of the solar system.

Modern View of the Solar System As of 2006, the solar system is made up of eight planets, including Earth, and many smaller objects that orbit the Sun. The eight planets and the Sun are shown in Figure 1. Notice how small Earth is compared with some of the other planets and the Sun.

The solar system includes a huge volume of space that stretches in all directions from the Sun. Because the Sun contains 99.86 percent of the mass of the solar system, its gravity is immense. The Sun’s gravity holds the planets and other objects in the solar system in their orbits.
How the Solar System Formed

Scientists hypothesize that the solar system formed from part of a nebula of gas, ice, and dust, like the one shown in Figure 2. Follow the steps shown in Figures 3A through 3D to learn how this might have happened. A nearby star might have exploded and the shock waves produced by these events could have caused the cloud to start contracting. As it contracted, the nebula likely fragmented into smaller and smaller pieces. The density in the cloud fragments became greater, and the attraction of gravity pulled more gas and dust toward several centers of contraction. This in turn caused them to flatten into disks with dense centers. As the cloud fragments continued to contract, they began to rotate faster and faster.

As each cloud fragment contracted, its temperature increased. Eventually, the temperature in the core of one of these cloud fragments reached about 10 million degrees Celsius. Nuclear fusion began when hydrogen atoms started to fuse and release energy. A star was born—the beginning of the Sun.

It is unlikely that the Sun formed alone. A cluster of stars like the Sun likely formed from parts of the original cloud. The Sun, which is one of many stars in our galaxy, probably escaped from this cluster and has since revolved around the galaxy many times.

What is nuclear fusion?

Planet Formation

Not all of the nearby gas, ice, and dust was drawn into the core of the cloud fragment. The matter that did not get pulled into the center collided and stuck together to form the planets and asteroids. Close to the Sun, the temperature was hot, and the easily vaporized elements could not condense into solids. This is why lighter elements are scarcer in the planets near the Sun than in planets farther out in the solar system.

The inner planets of the solar system—Mercury, Venus, Earth, and Mars—are small, rocky planets with iron cores. The outer planets are Jupiter, Saturn, Uranus, and Neptune. The outer planets are much larger and are made mostly of lighter substances such as hydrogen, helium, methane, and ammonia.
Through careful observations, astronomers have found clues that help explain how the solar system may have formed. A More than 4.6 billion years ago, the solar system was a cloud fragment of gas, ice, and dust. B Gradually, this cloud fragment contracted into a large, tightly packed, spinning disk. The disk’s center was so hot and dense that nuclear fusion reactions began to occur, and the Sun was born. C Eventually, the rest of the material in the disk cooled enough to clump into scattered solids. D Finally, these clumps collided and combined to become the eight planets that make up the solar system today.
Motions of the Planets

When Nicholas Copernicus developed his Sun-centered model of the solar system, he thought that the planets orbited the Sun in circles. In the early 1600s, German mathematician Johannes Kepler began studying the orbits of the planets. He discovered that the shapes of the orbits are not circular. They are oval shaped, or elliptical. His calculations further showed that the Sun is not at the center of the orbits but is slightly offset.

Kepler also discovered that the planets travel at different speeds in their orbits around the Sun, as shown in Table 1. You can see that the planets closer to the Sun travel faster than planets farther away from the Sun. Because of their slower speeds and the longer distances they must travel, the outer planets take much longer to orbit the Sun than the inner planets do.

Copernicus’s ideas, considered radical at the time, led to the birth of modern astronomy. Early scientists didn’t have technology such as space probes to learn about the planets. Nevertheless, they developed theories about the solar system that still are used today.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Average Orbital Speed (km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>48</td>
</tr>
<tr>
<td>Venus</td>
<td>35</td>
</tr>
<tr>
<td>Earth</td>
<td>30</td>
</tr>
<tr>
<td>Mars</td>
<td>24</td>
</tr>
<tr>
<td>Jupiter</td>
<td>13</td>
</tr>
<tr>
<td>Saturn</td>
<td>9.7</td>
</tr>
<tr>
<td>Uranus</td>
<td>6.8</td>
</tr>
<tr>
<td>Neptune</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Self Check

1. Describe the Sun-centered model of the solar system. What holds the solar system together?
2. Explain how the planets in the solar system formed.
3. Infer why life is unlikely on the outer planets in spite of the presence of water, methane, and ammonia—materials needed for life to develop.
4. List two reasons why the outer planets take longer to orbit the Sun than the inner planets do.
5. Think Critically Would a year on the planet Neptune be longer or shorter than an earth year? Explain.

Applying Skills

6. Concept Map Make a concept map that compares and contrasts the Earth-centered model with the Sun-centered model of the solar system.
Planets travel around the Sun along paths called orbits. As you construct a model of a planetary orbit, you will observe that the shape of planetary orbits is an ellipse.

Real-World Question

How can you model planetary orbits?

Goals
- Model planetary orbits.
- Calculate the eccentricity of ellipses.

Materials
- thumbtacks or pins (2)
- metric ruler
- cardboard (23 cm × 30 cm)
- string (25 cm)
- paper (21.5 cm × 28 cm)
- pencil

Safety Precautions

Procedure

1. Place a blank sheet of paper on top of the cardboard and insert two thumbtacks or pins about 3 cm apart.
2. Tie the string into a circle with a circumference of 15 cm to 20 cm. Loop the string around the thumbtacks. With someone holding the tacks or pins, place your pencil inside the loop and pull it tight.
3. Moving the pencil around the tacks and keeping the string tight, mark a line until you have completed a smooth, closed curve.
4. Repeat steps 1 through 3 several times. First, vary the distance between the tacks, then vary the length of the string. However, change only one of these each time. Make a data table to record the changes in the sizes and shapes of the ellipses.

5. Eccentricity is a measure of how an orbit varies from a perfect circle. Eccentricity, e, is determined by dividing the distance, d, between the foci (fixed points—here, the tacks) by the length, l, of the major axis.

6. Calculate and record the eccentricity of the ellipses that you constructed.

7. Research the eccentricities of planetary orbits. Construct an ellipse with the same eccentricity as Earth’s orbit.

Conclude and Apply

1. Analyze the effect that a change in the length of the string or the distance between the tacks has on the shape of the ellipse.
2. Hypothesize what must be done to the string or placement of tacks to decrease the eccentricity of a constructed ellipse.
3. Describe the shape of Earth’s orbit. Where is the Sun located within the orbit?

Communicating Your Data

Compare your results with those of other students. For more help, refer to the Science Skill Handbook.
Inner Planets

Today, people know more about the solar system than ever before. Better telescopes allow astronomers to observe the planets from Earth and space. In addition, space probes have explored much of the solar system. Prepare to take a tour of the solar system through the eyes of some space probes.

Mercury

The closest planet to the Sun is Mercury. The first American spacecraft mission to Mercury was in 1974–1975 by Mariner 10. The spacecraft flew by the planet and sent pictures back to Earth. Mariner 10 photographed only 45 percent of Mercury’s surface, so scientists don’t know what the other 55 percent looks like. What they do know is that the surface of Mercury has many craters and looks much like Earth’s Moon. It also has cliffs as high as 3 km on its surface. These cliffs might have formed at a time when Mercury shrank in diameter, as seen in Figure 4.

Why would Mercury have shrunk? Mariner 10 detected a weak magnetic field around Mercury. This indicates that the planet has an iron core. Some scientists hypothesize that Mercury’s crust solidified while the iron core was still hot and molten. As the core started to solidify, it contracted. The cliffs resulted from breaks in the crust caused by this contraction.
Does Mercury have an atmosphere? Because of Mercury’s low gravitational pull and high daytime temperatures, most gases that could form an atmosphere escape into space. *Mariner 10* found traces of hydrogen and helium gas that were first thought to be an atmosphere. However, these gases are now known to be temporarily taken from the solar wind.

The lack of atmosphere and its nearness to the Sun cause Mercury to have great extremes in temperature. Mercury’s temperature can reach 425°C during the day, and it can drop to −170°C at night.

Future Mission Launched in 2004, *Messenger* is the next mission to Mercury. This space probe will fly by the planet in 2008 and orbit it in 2011. The probe will photograph and map the entire surface.

Venus

The second planet from the Sun is *Venus*, shown in Figure 5. Venus is sometimes called Earth’s twin because its size and mass are similar to Earth’s. In 1962, *Mariner 2* flew past Venus and sent back information about Venus’s atmosphere and rotation. The former Soviet Union landed the first probe on the surface of Venus in 1970. *Venera 7*, however, stopped working in less than an hour because of the high temperature and pressure. Additional *Venera* probes photographed and mapped the surface of Venus. Between 1990 and 1994, the U.S. *Magellan* probe used its radar to make the most detailed maps yet of Venus’s surface. It collected radar images of 98 percent of Venus’s surface. Notice the huge volcano in Figure 5.

Clouds on Venus are so dense that only a small percentage of the sunlight that strikes the top of the clouds reaches the planet’s surface. The sunlight that does get through warms Venus’s surface, which then gives off heat to the atmosphere. Much of this heat is absorbed by carbon dioxide gas in Venus’s atmosphere. This causes a greenhouse effect similar to, but more intense than, Earth’s greenhouse effect. Due to this intense greenhouse effect, the temperature on the surface of Venus is between 450°C and 475°C.
Earth

Figure 6 shows Earth, the third planet from the Sun. The average distance from Earth to the Sun is 150 million km, or one astronomical unit (AU). Unlike other planets, Earth has abundant liquid water and supports life. Earth’s atmosphere causes most meteors to burn up before they reach the surface, and its ozone layer protects life from the effects of the Sun’s intense radiation.

Mars

Look at Figure 7. Can you guess why Mars, the fourth planet from the Sun, is called the red planet? Iron oxide in soil on its surface gives it a reddish color. Other features visible from Earth are Mars’s polar ice caps and changes in the coloring of the planet’s surface. The ice caps are made of frozen water covered by a layer of frozen carbon dioxide.

Many features on Mars are similar to those on Earth. Mars is often called the “red planet.”

Olympus Mons is the largest volcano in the solar system.

Valles Marineris is more than 4,000 km long, up to 200 km wide, and more than 7 km deep.

Most of the information scientists have about Mars came from Mariner 9, the Viking probes, Mars Pathfinder, Mars Global Surveyor, Mars Odyssey, and the Mars Exploration Rovers. Mariner 9 orbited Mars in 1971 and 1972. It revealed long channels on the planet that might have been carved by flowing water. Mariner 9 also discovered the largest volcano in the solar system, Olympus Mons, shown in Figure 7. Olympus Mons is probably extinct. Large rift valleys in the Martian crust also were discovered. One such valley, Valles Marineris, is shown in Figure 7.
The **Viking Probes** The Viking 1 and 2 probes arrived at Mars in 1976. Each probe consisted of an orbiter and a lander. The orbiters photographed the entire planet from their orbits, while the landers touched down on the surface. Instruments on the landers attempted to detect possible life by analyzing gases in the Martian soil. The tests found no conclusive evidence of life.

Pathfinder and Global Surveyor The Mars Pathfinder carried a robot rover named *Sojourner* to test samples of Martian rocks and soil. The data showed that iron in the crust might have been leached out by groundwater. Cameras onboard *Global Surveyor* showed features that looked like sediment gullies and deposits formed by flowing water. These features, shown in **Figure 8**, seem to indicate that groundwater might exist on Mars and that it reached the surface. The features are similar to those formed by flash floods on Earth, such as on Mount St. Helens.

Odyssey and Mars Exploration Rovers In 2002, *Mars Odyssey* began orbiting Mars. It measured elements in Mars’s crust and searched for signs of water. Instruments on *Odyssey* detected high levels of hematite, a mineral that forms in water, and subsurface ice near the poles.

Odyssey also relayed data to Earth from the Mars Exploration Rovers *Spirit* and *Opportunity* in 2004. These robot rovers analyzed Martian geology. Data from *Opportunity* confirmed that there were once bodies of water on Mars’s surface.

Inferring Effects of Gravity

Procedure
1. Suppose you are a crane operator who is sent to Mars to help build a colony.
2. Your crane can lift 4,500 kg on Earth, but the force due to gravity on Mars is only 40 percent as large as that on Earth.
3. Determine how much mass your crane could lift on Earth and Mars.

Analysis
1. How can what you have discovered be an advantage over construction on Earth?
2. How might construction advantages change the overall design of the Mars colony?

What evidence indicates that Mars has water?

Figure 8 Compare the features found on Mars with those found on an area of Mount St. Helens in Washington state that experienced a flash flood.
Mars’s Atmosphere The *Viking* and *Global Surveyor* probes analyzed gases in the Martian atmosphere and determined atmospheric pressure and temperature. They found that Mars’s atmosphere is much thinner than Earth’s. It is composed mostly of carbon dioxide, with some nitrogen and argon. Surface temperatures range from −125°C to 35°C. The temperature difference between day and night results in strong winds on the planet, which can cause global dust storms during certain seasons. This information will help in planning possible human exploration of Mars in the future.

Martian Seasons Mars’s axis of rotation is tilted 25°, which is close to Earth’s tilt of 23.5°. Because of this, Mars goes through seasons as it orbits the Sun, just like Earth does. The polar ice caps on Mars change with the season. During winter, carbon dioxide ice accumulates and makes the ice cap larger. During summer, carbon dioxide ice changes to carbon dioxide gas and the ice cap shrinks. As one ice cap gets larger, the other ice cap gets smaller. The color of the ice caps and other areas on Mars also changes with the season. The movement of dust and sand during dust storms causes the changing colors.

Applying Math

Use Percentages

Diameter of Mars The diameter of Earth is 12,756 km. The diameter of Mars is 53.3 percent of the diameter of Earth. Calculate the diameter of Mars.

Solution

1. **This is what you know:**
 - diameter of Earth: 12,756 km
 - percent of Earth’s diameter: 53.3%
 - decimal equivalent: 0.533 (53.3% ÷ 100)
2. **This is what you need to find:**
 - diameter of Mars
3. **This is the procedure you need to use:**
 - Multiply the diameter of Earth by the decimal equivalent.
 - \((12,756 \text{ km}) \times (0.533) = 6,799 \text{ km}\)

Practice Problems

1. Use the same procedure to calculate the diameter of Venus. Its diameter is 94.9 percent of the diameter of Earth.
2. Calculate the diameter of Mercury. Its diameter is 38.2 percent of the diameter of Earth.

For more practice, visit earth.msscience.com/math_practice
Martian Moons Mars has two small, irregularly shaped moons that are heavily cratered. Phobos, shown in Figure 9, is about 25 km in length, and Deimos is about 13 km in length. Deimos orbits Mars once every 31 h, while Phobos speeds around Mars once every 7 h.

Phobos has many interesting surface features. Grooves and chains of smaller craters seem to radiate out from the large Stickney Crater. Some of the grooves are 700 m across and 90 m deep. These features probably are the result of the large impact that formed the Stickney Crater.

Deimos is the outer of Mars’s two moons. It is among the smallest known moons in the solar system. Its surface is smoother in appearance than that of Phobos because some of its craters have partially filled with soil and rock.

As you toured the inner planets through the eyes of the space probes, you saw how each planet is unique. Refer to Table 3 following Section 3 for a summary of the planets. Mercury, Venus, Earth, and Mars are different from the outer planets, which you’ll explore in the next section.

Summary

Mercury
- Mercury is extremely hot during the day and extremely cold at night.
- Its surface has many craters.

Venus
- Venus’s size and mass are similar to Earth’s.
- Temperatures on Venus are between 450°C and 475°C.

Earth
- Earth is the only planet known to support life.

Mars
- Mars has polar ice caps, channels that might have been carved by water, and the largest volcano in the solar system, Olympus Mons.

Self Check
1. Explain why Mercury’s surface temperature varies so much from day to night.
2. List important characteristics for each inner planet.
3. Infer why life is unlikely on Venus.
4. Identify the inner planet that is farthest from the Sun. Identify the one that is closest to the Sun.
5. Think Critically Aside from Earth, which inner planet could humans visit most easily? Explain.
6. Use Statistics The inner planets have the following average densities: Mercury, 5.43 g/cm³; Venus, 5.24 g/cm³; Earth, 5.52 g/cm³; and Mars, 3.94 g/cm³. Which planet has the highest density? Which has the lowest? Calculate the range of these data.
The Outer Planets

Outer Planets

You might have heard about Voyager, Galileo, and Cassini. They were not the first probes to the outer planets, but they gathered a lot of new information about them. Follow the spacecrafts as you read about their journeys to the outer planets.

Jupiter

In 1979, Voyager 1 and Voyager 2 flew past Jupiter, the fifth planet from the Sun. Galileo reached Jupiter in 1995, and Cassini flew past Jupiter on its way to Saturn in 2000. The spacecrafts gathered new information about Jupiter. The Voyager probes revealed that Jupiter has faint dust rings around it and that one of its moons has active volcanoes on it.

Jupiter’s Atmosphere

Jupiter is composed mostly of hydrogen and helium, with some ammonia, methane, and water vapor. Scientists hypothesize that the atmosphere of hydrogen and helium changes to an ocean of liquid hydrogen and helium toward the middle of the planet. Below this liquid layer might be a rocky core. The extreme pressure and temperature, however, would make the core different from any rock on Earth.

You’ve probably seen pictures from the probes of Jupiter’s colorful clouds. In Figure 10, you can see bands of white, red, tan, and brown clouds in its atmosphere. Continuous storms of swirling, high-pressure gas have been observed on Jupiter. The Great Red Spot is the most spectacular of these storms.

Jupiter’s Great Red Spot

The Great Red Spot is a giant storm about 25,000 km in size from east to west.

Figure 10

Jupiter is the largest planet in the solar system.

Review Vocabulary

- moon: a natural satellite of a planet that is held in its orbit around the planet by the planet’s gravitational pull

New Vocabulary

- Jupiter
- Great Red Spot
- Saturn
- Uranus
- Neptune
- Pluto

Describe the characteristics of Jupiter, Saturn, Uranus, and Neptune.

Describe the largest moons of each of the outer planets.

Studying the outer planets will help scientists understand Earth.

Why It’s Important
Moons of Jupiter

At least 63 moons orbit Jupiter. In 1610, the astronomer Galileo Galilei was the first person to see Jupiter’s four largest moons, shown in Table 2. Io (I oh) is the closest large moon to Jupiter. Jupiter’s tremendous gravitational force and the gravity of Europa, Jupiter’s next large moon, pull on Io. This force heats up Io, causing it to be the most volcanically active object in the solar system. You can see a volcano erupting on Io in Figure 11. Europa is composed mostly of rock with a thick, smooth crust of ice. Under the ice might be an ocean as deep as 50 km. If this ocean of water exists, it will be the only place in the solar system, other than Earth, where liquid water exists in large quantities. Next is Ganymede, the largest moon in the solar system—larger even than the planet Mercury. Callisto, the last of Jupiter’s large moons, is composed mostly of ice and rock. Studying these moons adds to knowledge about the origin of Earth and the rest of the solar system.

Table 2 Large Moons of Jupiter

<table>
<thead>
<tr>
<th>Moon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Io</td>
<td>The most volcanically active object in the solar system; sulfurous compounds give it its distinctive reddish and orange colors; has a thin atmosphere of sulfur dioxide.</td>
</tr>
<tr>
<td>Europa</td>
<td>Rocky interior is covered by a smooth 5-km-thick crust of ice, which has a network of cracks; a 50-km-deep ocean might exist under the ice crust; has a thin oxygen atmosphere.</td>
</tr>
<tr>
<td>Ganymede</td>
<td>Has a heavily cratered crust of ice covered with grooves; has a rocky interior surrounding a molten iron core and a thin oxygen atmosphere.</td>
</tr>
<tr>
<td>Callisto</td>
<td>Has a heavily cratered crust with a mixture of ice and rock throughout the interior; has a rock core and a thin atmosphere of carbon dioxide.</td>
</tr>
</tbody>
</table>

Figure 11 Voyager 2 photographed the eruption of this volcano on Io in July 1979.
Saturn

The Voyager probes next surveyed Saturn in 1980 and 1981. Cassini reached Saturn on July 1, 2004. Saturn is the sixth planet from the Sun. It is the second-largest planet in the solar system, but it has the lowest density.

Saturn’s Atmosphere Similar to Jupiter, Saturn is a large, gaseous planet. It has a thick outer atmosphere composed mostly of hydrogen and helium. Saturn’s atmosphere also contains ammonia, methane, and water vapor. As you go deeper into Saturn’s atmosphere, the gases gradually change to liquid hydrogen and helium. Below its atmosphere and liquid layer, Saturn might have a small, rocky core.

Rings and Moons The Voyager and Cassini probes gathered information about Saturn’s ring system. The probes showed that there are several broad rings. Each large ring is composed of thousands of thin ringlets. Figure 12 shows that Saturn’s rings are composed of countless ice and rock particles. These particles range in size from a speck of dust to tens of meters across. Saturn’s ring system is the most complex one in the solar system.

At least 47 moons orbit Saturn. Saturn’s gravity holds these moons in their orbits around Saturn, just like the Sun’s gravity holds the planets in their orbits around the Sun. The largest moon, Titan, is larger than the planet Mercury. It has a thick atmosphere of nitrogen, argon, and methane. Cassini delivered the Huygens probe to analyze Titan’s atmosphere in 2005.
Uranus

Beyond Saturn, Voyager 2 flew by Uranus in 1986. Uranus (YOOR uh nus) is the seventh planet from the Sun and was discovered in 1781. It is a large, gaseous planet with at least 27 moons and a system of thin, dark rings. Uranus’s largest moon, Titania, has many craters and deep valleys. The valleys on this moon indicate that some process reshaped its surface after it formed. Uranus’s 11 rings surround the planet’s equator.

Uranus’s Characteristics The atmosphere of Uranus is composed of hydrogen, helium, and some methane. Methane gives the planet the bluish-green color that you see in Figure 13. Methane absorbs the red and yellow light, and the clouds reflect the green and blue. Few cloud bands and storm systems can be seen on Uranus. Evidence suggests that under its atmosphere, Uranus is composed primarily of rock and various ices. There is no separate core.

Figure 14 shows one of the most unusual features of Uranus. Its axis of rotation is tilted on its side compared with the other planets. The axes of rotation of the other planets are nearly perpendicular to the planes of their orbits. However, Uranus’s axis of rotation is nearly parallel to the plane of its orbit. Some scientists believe a collision with another object tipped Uranus on its side.

Figure 13 The atmosphere of Uranus gives the planet its distinct bluish-green color.

Figure 14 Uranus’s axis of rotation is nearly parallel to the plane of its orbit. During its revolution around the Sun, each pole, at different times, points almost directly at the Sun.
Neptune

Passing Uranus, Voyager 2 traveled to Neptune, another large, gaseous planet. Discovered in 1846, Neptune is the eighth planet from the Sun.

Neptune's Characteristics

Like Uranus’s atmosphere, Neptune’s atmosphere is made up of hydrogen and helium, with smaller amounts of methane. The methane content gives Neptune, shown in Figure 15, its distinctive bluish-green color, just as it does for Uranus.

What gives Neptune its bluish-green color?

Neptune has dark-colored storms in its atmosphere that are similar to the Great Red Spot on Jupiter. One discovered by Voyager 2 in 1989 was called the Great Dark Spot. It was about the size of Earth with windspeeds higher than any other planet. Observations by the Hubble Space Telescope in 1994 showed that the Great Dark Spot disappeared and then reappeared. Bright clouds also form and then disappear. Scientists don’t know what causes these changes, but they show that Neptune’s atmosphere is active and changes rapidly.

Under its atmosphere, Neptune has a mixture of rock and various types of ices made from methane and ammonia. Neptune probably has a rocky core.

Neptune has at least 13 moons and several rings. Triton, shown in Figure 15, is Neptune’s largest moon. It has a thin atmosphere composed mostly of nitrogen. Neptune’s dark rings are young and probably won’t last very long.
Dwarf Planets

From the time of its discovery in 1930 until 2006 Pluto was considered the ninth planet in the solar system. But with the discovery of Eris (EE rihs), which is larger than Pluto, the International Astronomical Union decided to define the term *planet*. Now, scientists call Pluto a dwarf planet.

Ceres Ceres was discovered in 1801. It has an average diameter of about 940 km and is located within the asteroid belt at an average distance of about 2.7 AU from the Sun. Ceres orbits the Sun about once every 4.6 years.

Pluto 1930 Pluto has a diameter of 2,300 km. It is an average distance of 39.2 AU from the Sun and takes 248 years to complete one orbit. It is surrounded by only a thin atmosphere and it has a solid, icy-rock surface. Pluto has three moons: Charon, Hydra, and Nix. The largest moon, Charon, has a diameter of about 1,200 km and orbits Pluto at a distance of about 19,500 km.

Eris Astronomers discovered Eris in 2005, originally calling it UB313. With a diameter of about 2,400 km, Eris is slightly larger than Pluto. Eris has an elliptical orbit that varies from between about 38 AU to 98 AU from the Sun. Eris orbits the Sun once every 557 years and has one moon, named Dysnomia (dihs NOH mee uh).

Summary

Jupiter
- Jupiter is the largest planet in the solar system.
- The Great Red Spot is a huge storm on Jupiter.

Saturn
- Saturn has a complex system of rings.

Uranus
- Uranus has a bluish-green color caused by methane in its atmosphere.

Neptune
- Like Uranus, Neptune has a bluish-green color.
- Neptune’s atmosphere can change rapidly.

Dwarf Planets
- Pluto is made of ice and rock.
- Ceres is a dwarf planet within the asteroid belt.

Self Check

1. Describe the differences between the outer planets and the inner planets.
2. Describe what Saturn’s rings are made from.
3. Compare Pluto to the eight planets.
4. Explain how Uranus’s axis of rotation differs from those of most other planets.
5. Think Critically What would seasons be like on Uranus? Explain.

Applying Skills

6. Identify a Question When a probe lands on Pluto, so many questions will be answered. Think of a question about Pluto that you’d like to have answered. Then, explain why the answer is important to you.
Table 3 Planets

<table>
<thead>
<tr>
<th>Planet</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>closest to the Sun
second-smallest planet
surface has many craters and high cliffs
no atmosphere
temperatures range from 425°C during the day to —170°C at night
has no moons</td>
</tr>
<tr>
<td>Venus</td>
<td>similar to Earth in size and mass
thick atmosphere made mostly of carbon dioxide
droplets of sulfuric acid in atmosphere give clouds a yellowish color
surface has craters, faultlike cracks, and volcanoes
greenhouse effect causes surface temperatures of 450°C to 475°C
has no moons</td>
</tr>
<tr>
<td>Earth</td>
<td>atmosphere protects life
surface temperatures allow water to exist as solid, liquid, and gas
only planet where life is known to exist
has one large moon</td>
</tr>
<tr>
<td>Mars</td>
<td>surface appears reddish-yellow because of iron oxide in soil
ice caps are made of frozen carbon dioxide and water
channels indicate that water had flowed on the surface; has large volcanoes and valleys
has a thin atmosphere composed mostly of carbon dioxide
surface temperatures range from —125°C to 35°C
huge dust storms often blanket the planet
has two small moons</td>
</tr>
</tbody>
</table>
Table 3 Planets

<table>
<thead>
<tr>
<th>Planet</th>
<th>Characteristics</th>
</tr>
</thead>
</table>
| Jupiter | - largest planet
 | - has faint rings
 | - atmosphere is mostly hydrogen and helium; continuous storms swirl on the planet—the largest is the Great Red Spot
 | - has four large moons and at least 59 smaller moons; one of its moons, Io, has active volcanoes |
| Saturn | - second-largest planet
 | - thick atmosphere is mostly hydrogen and helium
 | - has a complex ring system
 | - has at least 47 moons—the largest, Titan, is larger than Mercury |
| Uranus | - large, gaseous planet with thin, dark rings
 | - atmosphere is hydrogen, helium, and methane
 | - axis of rotation is nearly parallel to plane of orbit
 | - has at least 27 moons |
| Neptune | - large, gaseous planet with rings that vary in thickness
 | - is sometimes farther from the Sun than Pluto is
 | - methane atmosphere causes its bluish-green color
 | - has dark-colored storms in atmosphere
 | - has at least 13 moons |
Comets

The planets and their moons are the most noticeable members of the Sun’s family, but many other objects also orbit the Sun. Comets, meteoroids, and asteroids are other important objects in the solar system.

You might have heard of Halley’s comet. A **comet** is composed of dust and rock particles mixed with frozen water, methane, and ammonia. Halley’s comet was last seen from Earth in 1986. English astronomer Edmund Halley realized that comet sightings that had taken place about every 76 years were really sightings of the same comet. This comet, which takes about 76 years to orbit the Sun, was named after him.

Oort Cloud Astronomer Jan Oort proposed the idea that billions of comets surround the solar system. This cloud of comets, called the Oort Cloud, is located beyond the orbit of Pluto. Oort suggested that the gravities of the Sun and nearby stars interact with comets in the Oort Cloud. Comets either escape from the solar system or get captured into smaller orbits.

Comet Hale-Bopp On July 23, 1995, two amateur astronomers made an exciting discovery. A new comet, Comet Hale-Bopp, was headed toward the Sun. Larger than most that approach the Sun, it was the brightest comet visible from Earth in 20 years. Shown in Figure 17, Comet Hale-Bopp was at its brightest in March and April 1997.
Structure of Comets The *Hubble Space Telescope* and spacecrafts such as the *International Cometary Explorer* have gathered information about comets. In 2006, a spacecraft called *Stardust* will return a capsule to Earth containing samples of dust from a comet’s tail. Notice the structure of a comet shown in Figure 18. It is a mass of frozen ice and rock.

As a comet approaches the Sun, it changes. Ices of water, methane, and ammonia vaporize because of the heat from the Sun. This releases dust and jets of gas. The gases and released dust form a bright cloud called a coma around the nucleus, or solid part, of the comet. The solar wind pushes on the gases and dust in the coma, causing the particles to form separate tails that point away from the Sun.

After many trips around the Sun, most of the ice in a comet’s nucleus has vaporized. All that’s left are dust and rock, which are spread throughout the orbit of the original comet.

Meteoroids, Meteors, and Meteorites You learned that comets vaporize and break up after they have passed close to the Sun many times. The small pieces from the comet’s nucleus spread out into a loose group within the original orbit of the comet. These pieces of dust and rock, along with those derived from other sources, are called meteoroids.

Sometimes the path of a meteoroid crosses the position of Earth, and it enters Earth’s atmosphere at speeds of 15 km/s to 70 km/s. Most meteoroids are so small that they completely burn up in Earth’s atmosphere. A meteoroid that burns up in Earth’s atmosphere is called a meteor, shown in Figure 19.
Meteor Showers Each time Earth passes through the loose group of particles within the old orbit of a comet, many small particles of rock and dust enter the atmosphere. Because more meteors than usual are seen, the event is called a meteor shower.

When a meteoroid is large enough, it might not burn up completely in the atmosphere. If it strikes Earth, it is called a meteorite. Barringer Crater in Arizona, shown in Figure 20, was formed when a large meteorite struck Earth about 50,000 years ago. Most meteorites are probably debris from asteroid collisions or broken-up comets, but some originate from the Moon and Mars.

What is a meteorite?

Asteroids

An asteroid is a piece of rock similar to the material that formed into the planets. Most asteroids are located in an area between the orbits of Mars and Jupiter called the asteroid belt. Find the asteroid belt in Figure 21. Why are they located there? The gravity of Jupiter might have kept a planet from forming in the area where the asteroid belt is located now.

Other asteroids are scattered throughout the solar system. They might have been thrown out of the belt by Jupiter’s gravity. Some of these asteroids have orbits that cross Earth’s orbit. Scientists monitor the positions of these asteroids. However, it is unlikely that an asteroid will hit Earth in the near future.
Asteroid Sizes The sizes of the asteroids in the asteroid belt range from tiny particles to objects 940 km in diameter. Ceres is the largest and the first one discovered. The next three in order of size are Vesta (530 km), Pallas (522 km), and 10 Hygiea (430 km). The asteroid Gaspra, shown in Figure 22, was photographed by *Galileo* on its way to Jupiter.

Exploring Asteroids On February 14, 2000, the *Near Earth Asteroid Rendezvous* (NEAR) spacecraft went into orbit around the asteroid 433 Eros and later completed its one-year mission of gathering data. Data from the probe show that Eros has many craters and is similar to meteorites on Earth. The Japanese space probe *Hayabusa* arrived at the asteroid Itokawa in November 2005. Its mission is to collect samples and return them to Earth in a capsule in June 2010.

Comets, asteroids, and most meteorites formed early in the history of the solar system. Scientists study these space objects to learn what the solar system might have been like long ago. Understanding this could help scientists better understand how Earth formed.

Summary

Comets
- Comets consist of dust, rock, and different types of ice.
- The Oort Cloud was proposed as a source of comets in the solar system.

Meteoroids, Meteors, Meteorites
- When meteoroids burn up in the atmosphere, they are called meteors.
- Meteor showers occur when Earth crosses the orbital path of a comet.

Asteroids
- Many asteroids occur between the orbits of Mars and Jupiter. This region is called the asteroid belt.

Self Check

1. Describe how a comet changes when it comes close to the Sun.
2. Explain how craters form.
3. Summarize the differences between comets and asteroids.
4. Describe the mission of the NEAR space probe.
5. Think Critically A meteorite found in Antarctica is thought to have come from Mars. How could a rock from Mars get to Earth?

Applying Math

6. Use Proportions During the 2001 Leonid Meteor Shower, some people saw 20 meteors each minute. Assuming a constant rate, how many meteors did these people see in one hour?
Solar System Distance Model

Real-World Question

Distances between the Sun and the planets of the solar system are large. These large distances can be difficult to visualize. Can you design and create a model that will demonstrate the distances in the solar system?

Make a Model

1. List the steps that you need to take to make your model. Describe exactly what you will do at each step.
2. List the materials that you will need to complete your model.
3. Describe the calculations that you will use to get scale distances from the Sun for all nine planets.
4. Make a table of scale distances that you will use in your model. Show your calculations in your table.
5. Write a description of how you will build your model. Explain how it will demonstrate relative distances between and among the Sun and planets of the solar system.

Goals

- **Design** a table of scale distances and model the distances between and among the Sun and the planets.

Possible Materials

- meterstick
- scissors
- pencil
- colored markers
- string (several meters)
- notebook paper (several sheets)

Safety Precautions

Use care when handling scissors.

Planetary Distances

<table>
<thead>
<tr>
<th>Planet</th>
<th>Distance to Sun (km)</th>
<th>Distance to Sun (AU)</th>
<th>Scale Distance (1 AU = 10 cm)</th>
<th>Scale Distance (1 AU = 2 cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>5.97×10^7</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venus</td>
<td>1.08×10^8</td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Earth</td>
<td>1.50×10^8</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mars</td>
<td>2.28×10^8</td>
<td>1.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jupiter</td>
<td>7.78×10^8</td>
<td>5.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturn</td>
<td>1.43×10^9</td>
<td>9.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranus</td>
<td>2.87×10^9</td>
<td>19.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neptune</td>
<td>4.50×10^9</td>
<td>30.07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Test Your Model

1. **Compare** your scale distances with those of other students. Discuss why each of you chose the scale that you did.
2. Make sure your teacher approves your plan before you start.
3. **Construct** the model using your scale distances.
4. While constructing the model, write any observations that you or other members of your group make, and complete the data table in your Science Journal. Calculate the scale distances that would be used in your model if \(1 \text{ AU} = 2 \text{ m} \).

Analyze Your Data

1. **Explain** how a scale distance is determined.
2. Was it possible to work with your scale? Explain why or why not.
3. How much string would be required to construct a model with a scale distance of \(1 \text{ AU} = 2 \text{ m} \)?
4. Proxima Centauri, the closest star to the Sun, is about 270,000 AU from the Sun. Based on your scale, how much string would you need to place this star on your model?

Conclude and Apply

1. **Summarize** your observations about distances in the solar system. How are distances between the inner planets different from distances between the outer planets?
2. Using your scale distances, determine which planet orbits closest to Earth. Which planet’s orbit is second closest?

Communicating Your Data

Compare your scale model with those of other students. Discuss any differences. For more help, refer to the *Science Skill Handbook*.
On September 4, 1990, Frances Pegg was unloading bags of groceries in her kitchen in Burnwell, Kentucky. Suddenly, she heard a loud crashing sound. Her husband Arthur heard the same sound. The sound frightened the couple’s goat and horse. The noise had come from an object that had crashed through the Pegg’s roof, their ceiling, and the floor of their porch. They couldn’t see what the object was, but the noise sounded like a gunshot, and pieces of wood from their home flew everywhere. The next day the couple looked under their front porch and found the culprit—a chunk of rock from outer space. It was a meteorite.

For seven years, the Peggs kept their “space rock” at home, making them local celebrities. The rock appeared on TV, and the couple was interviewed by newspaper reporters. In 1997, the Peggs sold the meteorite to the National Museum of Natural History in Washington, D.C., which has a collection of more than 9,000 meteorites. Scientists there study meteorites to learn more about the solar system. One astronomer explained, “Meteorites formed at about the same time as the solar system, about 4.6 billion years ago, though some are younger.”

Scientists especially are interested in the Burnwell meteorite because its chemical make up is different from other meteorites previously studied. The Burnwell meteorite is richer in metallic iron and nickel than other known meteorites and is less rich in some metals such as cobalt. Scientists are comparing the rare Burnwell rock with other data to find out if there are more meteorites like the one that fell on the Peggs’ roof. But so far, it seems the Peggs’ visitor from outer space is one-of-a-kind.

The Burnwell meteorite crashed into the Peggs’ home and landed in their basement on the right.

Research Do research to learn more about meteorites. How do they give clues to how our solar system formed? Report to the class.
Section 1 The Solar System

1. Early Greek scientists thought that Earth was at the center of the solar system. They thought that the planets and stars circled Earth.

2. Today, people know that objects in the solar system revolve around the Sun.

Section 2 The Inner Planets

1. The inner planets are Mercury, Venus, Earth, and Mars.

2. The inner planets are small, rocky planets.

Section 3 The Outer Planets

1. The outer planets are Jupiter, Saturn, Uranus, and Neptune.

2. Pluto is a small icy dwarf planet. Other dwarf planets include Ceres and Eris.

Section 4 Other Objects in the Solar System

1. Comets are masses of ice and rock. When a comet approaches the Sun, some ice turns to gas and the comet glows brightly.

2. Meteors occur when small pieces of rock enter Earth’s atmosphere and burn up.

Copy and complete the following concept map about the solar system.
Fill in the blanks with the correct words.

1. A meteoroid that burns up in Earth’s atmosphere is called a(n) ________.

2. The Great Red Spot is a giant storm on ________.

3. ________ is the second largest planet.

4. The Viking landers tested for life on ________.

5. The ________ includes the Sun, planets, moons, and other objects.

Use the photo below to answer question 10.

10. Which planet has a complex ring system consisting of thousands of ringlets?
 A) Jupiter C) Uranus
 B) Saturn D) Mars

11. What is a rock from space that strikes Earth’s surface?
 A) asteroid C) meteorite
 B) meteoroid D) meteor

12. By what process does the Sun produce energy?
 A) magnetism C) nuclear fusion
 B) nuclear fission D) gravity

13. In what direction do comet tails point?
 A) toward the Sun C) toward Earth
 B) away from the Sun D) away from the Oort Cloud

14. Which planet has abundant surface water and is known to have life?
 A) Mars C) Earth
 B) Jupiter D) Venus

15. Which planet has the highest temperatures because of the greenhouse effect?
 A) Mercury C) Saturn
 B) Venus D) Earth
16. **Infer** Why are probe landings on Jupiter not possible?

17. **Concept Map** Copy and complete the concept map on this page to show how a comet changes as it travels through space.

18. **Recognize Cause and Effect** What evidence suggests that liquid water is or once was present on Mars?

19. **Venn Diagram** Create a Venn diagram for Earth and Venus. Create a second Venn diagram for Uranus and Neptune. Which two planets do you think are more similar?

20. **Recognize Cause and Effect** Mercury is closer to the Sun than Venus, yet Venus has higher temperatures. Explain.

21. **Make Models** Make a model that includes the Sun, Earth, and the Moon. Use your model to demonstrate how the Moon revolves around Earth and how Earth and the Moon revolve around the Sun.

22. **Form Hypotheses** Why do Mars’s two moons look like asteroids?

23. **Display** Mercury, Venus, Mars, Jupiter, and Saturn can be observed with the unaided eye. Research when and where in the sky these planets can be observed during the next year. Make a display illustrating your findings. Take some time to observe some of these planets.

24. **Short Story** Select one of the planets or a moon in the solar system. Write a short story from the planet’s or moon’s perspective. Include scientifically correct facts and concepts in your story.

25. **Saturn’s Atmosphere** Saturn’s atmosphere consists of 96.3% hydrogen and 3.25% helium. What percentage of Saturn’s atmosphere is made up of other gases?

26. **Length of Day on Pluto** A day on Pluto lasts 6.39 times longer than a day on Earth. If an Earth day lasts 24 h, how many hours is a day on Pluto?

27. **Gravity and Weight** Melissa weighs 31.8 kg on Earth. Multiply Melissa’s weight by the proportion of Earth’s gravity for each planet to find out how much Melissa would weigh on each.

Weight on Several Planets

<table>
<thead>
<tr>
<th>Planet</th>
<th>Proportion of Earth’s Gravity</th>
<th>Melissa’s Weight (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>0.378</td>
<td></td>
</tr>
<tr>
<td>Venus</td>
<td>0.903</td>
<td></td>
</tr>
<tr>
<td>Earth</td>
<td>1.000</td>
<td>31.8</td>
</tr>
<tr>
<td>Mars</td>
<td>0.379</td>
<td></td>
</tr>
<tr>
<td>Jupiter</td>
<td>2.54</td>
<td></td>
</tr>
</tbody>
</table>

Use the graph below to answer question 27.
1. What is shown in the photo above?
A. asteroids
B. comets
C. meteors
D. meteorites

2. Which is the eighth planet from the Sun?
A. Earth
B. Mars
C. Jupiter
D. Neptune

3. Which is Pluto’s largest moon?
A. Hydra
B. Nix
C. Charon
D. Triton

4. Which object’s gravity holds the planets in their orbits?
A. Gaspra
B. Earth
C. Mercury
D. the Sun

5. Which of the following occurs in a cycle?
A. appearance of Halley’s comet
B. condensation of a nebula
C. formation of a crater
D. formation of a planet

6. Which planet likely will be visited by humans in the future?
A. Jupiter
B. Venus
C. Mars
D. Neptune

7. Between which two planets’ orbits does the asteroid belt occur?
A. Mercury and Venus
B. Earth and Mars
C. Uranus and Neptune
D. Mars and Jupiter

8. Who discovered that planets have elliptical orbits?
A. Galileo Galilei
B. Johannes Kepler
C. Albert Einstein
D. Nicholas Copernicus

9. Which of the following answers is a good estimate for the diameter of Mars?
A. 23,122 km
B. 6,794 km
C. 1,348 km
D. 12,583 km

Test-Taking Tip
No Peeking During the test, keep your eyes on your own paper. If you need to rest them, close them or look up at the ceiling.
10. Why does a moon remain in orbit around a planet?

11. Compare and contrast the inner planets and the outer planets.

12. Describe the difference between Pluto and the eight planets.

13. Describe Saturn’s rings. What are they made of?

14. What is the Great Red Spot?

15. How is Earth different from the other planets in the solar system?

Use the graph below to answer questions 16–19.

Viking Lander 1 Temperature Data

16. Why do the temperatures in the graph vary in a pattern?

17. Approximate the typical high temperature value measured by Viking I.

18. Approximate the typical low temperature value measured by Viking I.

19. What is the range of these temperature values?

20. How might near-Earth-asteroids affect life on Earth? Why do astronomers search for them and monitor their positions?

Use the illustration below to answer question 21.

21. Explain how scientists hypothesize that the large cliffs on Mercury formed.

22. Describe the Sun-centered model of the solar system. How is it different from the Earth-centered model?

23. What is an astronomical unit? Why is it useful?

24. Compare and contrast the distances between the planets in the solar system. Which planets are relatively close together? Which planets are relatively far apart?

25. Summarize the current hypothesis about how the solar system formed.

26. Explain how Earth’s gravity affects objects that are on or near Earth.

27. Describe the shape of planets’ orbits. What is the name of this shape? Where is the Sun located?

28. Describe Jupiter’s atmosphere. What characteristics can be observed in images acquired by space probes?